Ehrhart Series of Polytopes Related to Symmetric Doubly-Stochastic Matrices
نویسنده
چکیده
In Ehrhart theory, the h∗-vector of a rational polytope often provides insights into properties of the polytope that may be otherwise obscured. As an example, the Birkhoff polytope, also known as the polytope of real doubly-stochastic matrices, has a unimodal h∗-vector, but when even small modifications are made to the polytope, the same property can be very difficult to prove. In this paper, we examine the h∗vectors of a class of polytopes containing real doubly-stochastic symmetric matrices.
منابع مشابه
Ehrhart Polynomials, Simplicial Polytopes, Magic Squares and a Conjecture of Stanley
It is proved that a certain symmetric sequence (h0, h1, . . . , hd) of nonnegative integers arising in the enumeration of magic squares of given size n by row sums or, equivalently, in the generating function of the Ehrhart polynomial of the polytope of doubly stochastic n × n matrices, is equal to the h-vector of a simplicial polytope and hence that it satisfies the conditions of the g-theorem...
متن کاملSome results on the symmetric doubly stochastic inverse eigenvalue problem
The symmetric doubly stochastic inverse eigenvalue problem (hereafter SDIEP) is to determine the necessary and sufficient conditions for an $n$-tuple $sigma=(1,lambda_{2},lambda_{3},ldots,lambda_{n})in mathbb{R}^{n}$ with $|lambda_{i}|leq 1,~i=1,2,ldots,n$, to be the spectrum of an $ntimes n$ symmetric doubly stochastic matrix $A$. If there exists an $ntimes n$ symmetric doubly stochastic ...
متن کاملThe Ehrhart Polynomial of the Birkhoff Polytope
The n Birkhoff polytope is the set of all doubly stochastic n × n matrices, that is, those matrices with nonnegative real coefficients in which every row and column sums to one. A wide open problem concerns the volumes of these polytopes, which have been known for n ≤ 8. We present a new, complex-analytic way to compute the Ehrhart polynomial of the Birkhoff polytope, that is, the function coun...
متن کاملFormulas for the Volumes of the Polytope of Doubly-stochastic Matrices and Its Faces
We provide an explicit combinatorial formula for the volume of the polytope of n× n doubly-stochastic matrices, also known as the Birkhoff polytope. We do this through the description of a generating function for all the lattice points of the closely related polytope of n × n real non-negative matrices with all row and column sums equal to an integer t. We can in fact recover similar formulas f...
متن کاملA generating function for all semi-magic squares and the volume of the Birkhoff polytope
We present a multivariate generating function for all n × n nonnegative integral matrices with all row and column sums equal to a positive integer t , the so called semi-magic squares. As a consequence we obtain formulas for all coefficients of the Ehrhart polynomial of the polytope Bn of n×n doubly-stochastic matrices, also known as the Birkhoff polytope. In particular we derive formulas for t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electr. J. Comb.
دوره 22 شماره
صفحات -
تاریخ انتشار 2015